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Fundamental solutions for a three-dimensional wedge are used to investigate problems of a thin, rigid, elliptic inclusion in a
wedge. A regular asymptotic form is employed which has previously been used in contact problems for a wedge [1] and in problems
of a crack in a wedge [2] in the case of an elliptic shape of the contact region or crack. The method is effective in the case of an
inclusion which is sufficiently distant from an edge of the wedge when the known exact solution for the space [3] can be taken
as the zeroth approximation. A numerical analysis and comparison of different characteristics of wedge problems is carried out.
© 2002 Elsevier Science Ltd. All rights reserved.

Fredholm integral equations of the second kind were obtained [4], in terms of the solution of which
the displacements and stresses in a three-dimensional elastic wedge, acted upon by normal and shear
loads on one of its edges and different conditions on the other edge, were expressed. For the case, when
this edge is stress-free, Papkovich—Neuber functions have been presented in [5] which are identical to
the well-known solutions of the Boussinesq and Cerruti problems when the angle of the wedge is equal
to 7 (the case of a half-space). A complex Fourier-Kontorovich-Lebedev integral was used to construct
the solutions in [4, 5] and also the technique of reducing the three-dimensional problem of the theory
of elasticity to a Vekua generalized Hilbert boundary-value problem {6, 7]. _

The exact solutions of two boundary-value problems are obtained below using this technique when
an arbitrarily directed concentrated force acts in the bisectorial half-plane of the wedge and the faces
of the wedge are under conditions of sliding clamping (Problem A) and rigid clamping (Problem B).
When the aperture angle of the wedge is equal to 2w, the solution of Problem A is identical with Kelvin’s
fundamental solution [8] in the classical theory of elasticity. Problem A generalizes the mixed problem
for a wedge (the normal displacements and shear stresses on the faces are specified) [9] and Problem
B generalizes the second basic problem for a wedge [10] to the case of the action of forces inside the
wedge.

1. A CONCENTRATED FORCE INSIDE
A THREE-DIMENSIONAL WEDGE

Consider a three-dimensional elastic wedge (0 < r < o0, |@| < o, |z] < =) with aperture angle 2a
and elastic characteristics G (the shear modulus) and v (Poisson’s ratio) in cylindrical coordinates r, ¢
and z. The z axis is directed along an edge of the wedge such that the system of coordinates is a right-
handed system (Fig. 1). Suppose an arbitrary concentrated force P, which has the projections P, and
P, on the coordinates axes, acts at the point = x, z = y in the middle half-plane ¢ = 0 of the wedge.
The faces ¢ = *a are under conditions of sliding or rigid clamping (Problems A and B, respectively).
By virtue of the symmetry of the problem with respect to the coordinate ¢, we shall consider the domain
of the wedge —o. < ¢ < 0 and write the boundary conditions in the form

Q=-0: Uy=Ty=Te=0 ProblemA
©=-0: uy=u,=u, =0 ProblemB (1.1)

©=0: u, =0,

1
Ty == P3(r-x)8(z-y), T4 = 51’28(r—x)5(z— y)

(ST

It is also assumed that the stresses decrease at infinity.
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We shall express the general solution of the Navier equilibrium equations in cylindrical coordinates
in terms of three Papkovich-Neuber harmonic functions ®, = ®,(r, ¢,z) (n = 0, 1, 2) using the formulae

p =9, 1 9
" 9r 4A(d-v)or

1 0® 1 Jdw .
u =-;a_(po+m3(’%—ﬁ)2, 0)2=COS(pd)]+Sm(p¢2 (12)

_ a¢0 r aO.),

U, = —

775, Tal-v) oz

(ro)) -©;, ©; =sin@®, —cos P,

Hence the stresses can be determined using Hooke’s law.

We shall seek the harmonic functions @, in the form of Fourier integrals with respect to z and
Kontorovich-Lebedev integrals with respect to r. Using the well known technique [6, 7], we find the
solution of the boundary-value problems (1.1) in the form of (1.2), where

®,(r.0.2) = ;J—GT ] sh(rOK  (B{P,C; (%.B)cos(Blz - y])+ )
00 i

+P,C; (1,B)sin(Blz - y))B~')dtdB, n=0,1,2



The problem of an inclusion in a three-dimensional elastic wedge 619
Here K (x) is the modified Bessel function. The functions
Gy = A7 (v, B)ch(oT) + B} (1, B)sh(gT)
By (1) = m’f_—v—)xh(ﬁx» AT (tB)=0, By (1,B)=K, (Bx) (1.4)
By (1B =K (B + ——Ki.(Bx), A7 (1.B)= K (Bv)
4(1-v) x
- , d
BZ (t’B) = Ki‘:(Bx) = gKi-:(Bx)

are the same for both of the problems being considered. Then, we have

N _ xcth(at) _ + _ sin(2a) . . - sh(20t)
AO (T- B) - 4(] — V) Klt (ﬁx)v B] (Tv B) g (T, a) Klt (Bx)v A2 (T’ B) g (T, a) Kit(Bx)
Ay (t.p)= cth(at)[K B+ xi I K,‘,(ﬁt)} (1.5)

Tsh(20T)K ; (Bx) - x sin(20)K . (Bx)
xg_(T,0)

Tsin(20)K,. (Bx) + x sh(2a1)K/, (Bx)
xg_(T,0)

B (.p)=

Ay (t.B) =

in the case of Problem A and

x th(ot)

+1 Kit(Bx)

AJ(T, B) =

xsh(2ot)K/, (Bx) — Tsin(2a)K . (Bx)
g+ (to)g(t, @)

A (1.B)=2sh2 (o) [xg., (T, @) - Teth(at)sin(20)]K ;. (Bx) + 2x sin? K, (Bx)
8, (T, 0)g(t,00)

B (1.B) =sin(2a)

A5 ) = hee K )+~ G o) 16)
_ sin(2at) _, BZxsin(2a)sh(20t)  Tsh(2at)

B (1, =_Kit Ki'r

D= (Bx”[ 2. (T 0g(n,a) +xg+(1:,a):' #o

. sh(2oT) _, 4B%xsin® ash?(at)  Tsin2o)

A (P =—F"FTK, - K

2D 8+(1,0) (Bx)+[ g (ra)g(r,0)  xg.(T@) a

in the case of Problem B.
Here

g: (T, 0) =ch(2at) £ cos(2a), g(T,0) = xsh(201) - tsin(2a), »x =3 -4y

In the case of the functions (1.4)—(1.6), the integrals (1.3) converge for all ¢ € [-a, 0].
The solution of Problem A in the form of (1.3)~(1.5) when o = 7 is identical to the fundamental
Kelvin solution for an elastic half-space. Actually, in this case
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AJ(T,B)=X—2%£-T]QK“(BX), B (t.B)=0, AF(1.B)=cth()K . (Bx)
Aam,a>=czh(nr>[xi,<sx>+-;%x:1<ﬂx>} (1.7)

B (1,B)= -}cth(m)Kh(Bx), A3 (1,B) = cth(n)K, (Bx)

and, for example, for the displacements in the plane of action of the force P, we obtain, using relations
(1.2) and well-known formulae ([11], formulae 2.16.52.6, 2.16.14.1), the expressions

“r(r,O,Z)zw, uz(r,o,z)zm (18)
4nG 4nG
where
1 (z-y) (r-x)z-y)
Ry=————— R =R, =" - .
"TR 4R T (k4 DR (1.9)
1 (r-x)?

Ry =— R=[(r- 0 +(z-y))*

R (x+DR*’
They correspond exactly to the fundamental Kelvin solution ([12], formulae (9.2) and (9.4)).

We will now explain why Problems A and B have exact solutions. It is well known [4, 7] that problems of the
action of a concentrated force on one face of a three-dimensional wedge, the other face of which is under conditions
of sliding or rigid clamping, reduce to Fredholm integral equations of the second kind. The displacements in the
wedge can then be expressed in the form of Neuman operator series. The boundary conditions (1.1) considered
above correspond to inverse problems since, when ¢ = 0, the displacement u,, is specified instead of the stress o,
Consequently, the solutions of problem (1.1) must contain the inverse of the above-mentioned Neuman series in
the form ([2], formula (1.6))

-1
[): (1—2v)"T"] =/-(1-2v)T (1.10)
n=0

where T is a known operator and 7 is the identity operator.

2. AN ELLIPTIC INCLUSION INSIDE
A THREE-DIMENSIONAL WEDGE

We will now apply the formula obtained above to problems of a thin, rigid inclusion in the middle half-
plane ¢ = 0 of a three-dimensional wedge. Suppose this inclusion occupies an elliptic domain Q:
(r-a)jc* + 2 <l,a>cb=c (Fig. 2). There is complete adhesion between the inclusion and the
elastic medium in the contact region. For simplicity, we will assume that the force 7, which is applied
to the inclusion and acts in the half-plane ¢ = 0, is perpendicular to the edge of the wedge. Consequently,
the inclusion is moved by an amount § in the direction of action of the force. The faces of the wedge
are under conditions of sliding or rigid clamping (the Problems of inclusion A and B, respectively). It
is required to determine the shear contact stresses 7,4(r, 0, z) = 27(r, z) and 1,,(r, 0, z) = 21,(r, 2),
(r,z) € Q and the relation between the quantities T and & (only one of these quantities is specified).
Since the problems are symmetrical about the half-plane ¢ = 0, we will consider the problems of the
equilibrium of an elastic wedge —a < @ < 0 with boundary conditions (1.1) for Problems A and B when
= —a and the following boundary conditions

¢=0: u, =8, u,=0 (r,2)el; T =0, Tg =0 (r,2)€Q,; ug =0 2.1)
Using the solutions obtained, we express the displacements u,(r, 0, z) and u,(r, 0, z) using formulae

(1.2). On replacing P, by 27;(x, y) and P, by 21,(x, y) in these expressions, integrating over the domain
€ with respect to the variablesx and y and satisfying the first two conditions of (2.1), we obtain a system
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of two integral equations in the unknown contact stresses 7,(x,y) (n = 1, 2), (x,y) € Q. On introducing
the dimensionless quantities

r-a x-a z o c
nL= b y Xe & b » Zt_;9 )’-={‘, 8‘=Z’ cuu:; (22)
2
T
A':gv T, (s Zs _:E.’L(_'ﬁ’ =]v2! Qa:i+ fsl» Ty
b A(ne ) G n 2 z %

and henceforth omitting the asterisks, this system can be written in the form
I __(z—y)
T ~—+ K (x,y.1,2)[dQ,, +
I ]( y{R 41-v )R3 Il( ¥ ):l Xy

(r=x)z-y

+gj2 12(x,y)[ PREESYE + K (x, oy, z)]dQ =2nd (r,2)eQ, (2.3)

I t](x,y)li%(:li)_(\%’l*- Ko (x,y, r,Z):Idey +
a -

2
+j' T,(x, y)[;i' ﬁ+ Kzz(x,y,r,z):ldﬁxy =0 (n2)eQ,

where

Kn(x,y.,rn2)=——— T T sh(nu)cos(Blz - y]){W,(u,a)(k +x)5a7 +W, (u,0)D, +
00

(1— v)n
+ Wi (u, a)()»+x)—— }K,u(ﬁ[l+ xDK,, (BIA + r)dudp

sin(Blz - y))
(- ) n? B
+ D, W(u,ot, x)}K,, (B{A + xDK, (B{A + r])dudp

Kpp(x,y.r,2)= j f sh(nu)

{W,(u,a)li+
or

A+x ]ﬂ | sh(nu)Bsin(ﬁ[z—y]){w,(u,cx)_w2

2.4
a-vim? 5 o (2.4)

Kyy(x,y.r,2)=-
-W(u,0)(A +r) %}Km(ﬁ[l + XK, (BIA + rdudp

(—,—_-?I | sh(mu)cos(Blz - y){(Wy(u @)D, -

=(A+ NW(u, 0, x))K, (BIA + xDK,, (BIA + r])dudp

Kyp(x,y,r,2) =

D, =x—(l+r)i, D, =x+1+(l+x)—a—
ar dx

Wi (u,00)

W(u,o,x)= W:,(u.a)ﬁz(k +x)+ W“(“’a)a% + —)\—l—x

For Problem A, we have

W (u, ) = cth(ow) — cth(mu), Wo(u,o) = &%z% - cth(mu) (2.5)

’

usin(2a)
8- (u,0x)

W(u,0)=0, W(n,a)=sW,(u,at), Wi(u,0)=
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and, for Problem B

W, (u, a) = th(ow) — cth(mtu)

xg, (u,0) — ucth(ow)sin(20t)

2
= —cth ]
W, (u, o) = 2sh”(ow) 2. (0. (i, 0) cth(mu) (2.6)
.2 2
Wi (1, 00) = 4sin“osh”(ow)
8+ (u,00)g(u, o)
sh(20w) u? sin(201)
= e— W N ==
W, (u,o) 2. (0.00) cth(ru), Ws(u,o0) )

Note that W, (o, u) = O(exp[-20m]), u — « (m = 1, ..., 5) for a fixed value of o € (0, n].

In the kernels of integral equations (2.3), the main parts corresponding to the inclusion in an infinite
space (Problem A for the case when oo = m when K,,,,(x,y, r, z) =0 (m, n = 1, 2); see [3], Eq. (1.16))
are separated out using formulae (1.8).

The dimensionless parameter A introduced in (2.2) characterizes the relative remoteness of the
inclusion from an edge of the wedge; the functions K,,,,(x, y,7,z2) > 0when A — e (m,n = 1,2). To
solve the system of integral equations (2.3), we use the regular asymptotic “large A” method [7, 1-3],
taking the exact solution of the problem of an inclusion in a space ([3], formulae (1.18)) as the zeroth
approximation. The method is based on the following lemma.

Lemma 1. In the case of Problem A and B of an inclusion, the functions K,,,,(x, y, r, z) (m,n = 1, 2)
are continuous together with all their derivatives when (x, y), (r, z) € Q. When

A>l+c (ae[lm]), A>a™ +c (aelc/2,1) 2.7)

A> A+ (1+ar) e (ae(0,c/2))
the functions K,,,,(x, v, 1, z), (x, ), (r, z) € Q can be represented by the absolutely convergent series

klm"(x»y’ I’,Z)

Kmn(x’y’ re)= Z N+Im-n|

1=1

, mn=12 (2.8)

where k;""(x, y, r, z) are certain polynomials.

Well-known results ([1], the first two formulae of (2.5)} are used to prove the convergence. To obtain
expansion (2.8), it is necessary to expand the trigonometric functions in formulae (2.4) in series. Integrals
of the form

| K, (BIA+xDK,, BIA+ )P dB =
0

210 cos(us)cos(ut)dsdt )

A ({ ({ [(1+x/Xychs+(1+r/A)che” 7 0L (29)
arise here, where the integral representation of a modified Bessel is used. The double integral (2.9) is
expanded in a double Taylor series in powers of x/A and r/A. A formula ([11], formula 2.16.33.2), which
can still be written in another form ([1], the last formula of (2.5)) is used to evaluate the integral
coefficients in these expansions.

As a result, we obtain for the functions K,,,,, when n = m

cm "+ Cyr
K (X, ¥ 7, 2) = ; +— Y i—+

. Cy™x* + CJ"xr + CI"r + CI™ (2 - y)? +
e

1
O(F), m=1,2 (2.10)
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where
C”——la +7—8va —7_8va ——l—a
0 7 4o 7 %0 7 90~ %
I 1 | 7-8v 1 1-8v 11-8v
G —_Za10+§al]—Ta20-§GZI+ g B0 T
1" 3 1 7-8v I 1-8v 1-8v
G =§am"§an'Tazo+gazu+ 3 ay + TR
1 1 3(7-8v)
Cl=—a,+—a +——2a, —
3 16010 33 91 16 20
IS-8v__X7-8)  9-l0v 3
32 2 32 07 16 256 2
3 5 7-8v
C”=§a|o—‘]’gall+"8—azo+
+]1—8va _7—8va __2—-va __3_a
T Y
5 9 3(7-8v)
C5”=‘Eam+‘3‘2‘an+Tazo—
_7—8Va _3(]3—16V)a _3(1—2V)a 42,
2 2 32 30 16 ' 256 2
C”-——3—a _9—8Va +19—24Va +La
6 =359 3 o 31+ 5g I
7-8v I
= > Qg — 7 a3+~ dg —Asp
7-8v 1 1 3
= 7 Qo gan 76031—2‘140’“8‘“41"' asg
7-8v 1 1 1 1
P =~ a,0+—§a,,+ﬁa3|+zaw——a4, 2“50
3(7-8v) 3_16v 5
P = 6 G035 an‘i‘aso—aaal*'
+La +Ea ——9-a —Ea +La
256 216 0 32 g 06 Y
9-8v 9-8v 5 -7
C32= Y3 a0t 32 all+§‘130+aa3l_
——l—a —a +—7—a +la —a
256 2 16 © 32 Y78 ° 16
3(7-8v) 11-8v 5
c? = ayg — Gy = =Gy — =y +
5 16 10 32 1 32‘130 64‘131
gy -y - ay - Lag +2-a
256 2 16 0 32 g 0T 3™
5-8v 1 3
Cl=-_g,+—ay ——ay +—a
32 256 2 33 4 T

Here, the notation

mn = 20— ) (j,th(n“) Won (@, 1) f, (u)du

hw=l, fw=1+4d’, fu=(1 +4u)(9+4u?)

623

(2.11)

(2.12)
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has been introduced, and, for the functions K,,,, when n # m, we obtain

where

Cmn Cmn +lel 1
Kun(x,y,1,2) = }?2 (z—y)+—‘—x7—2——r(z—y)+0(7), m, n=
7-8v 1 9-8v 7-8v 1 7-8v
C12=————a,0+§a”+ P R a4o‘§041+—8—
C’2=3—4Va +3—4Va +_5_a _9—16Va 1 P
1 10 3 Y3590 T T 256 32
3(7-8v) 3-8v 3(7-8v) !
TTTg T T T g 9y
3(7-8v) 20-17v 5 3(9-8v)
cl? = _ 2 228
2 3 a0 ap |6aao 2 as,
+La +(1-v)a +-l;-a j—_—jsla +—]—a
128 32 40 41 50+ g 91
2 1
CO'——-a,,+§a2,+T—a3,
1 3 5 1
Cl=—a, - —ay +—ay +—ay, — —
1 169 T 76 % T g %0 32031 ]28‘132
n 3 e a2 e
2 e T TR M0 T It osg In

1,2

asgo

(2.13)

(2.14)

The values of the constants a,,,, of the form (2.12) for v = 0.3 and different wedge angles 2¢ are
shown in Table 1 for Problem A, when ay, = 0, a4 = a4, and for Problem B.
Now, on finding the solution of system (2.3), taking account of expressions (2.1) and (2.13) in the

formula
Table 1
20 n/3 /2 2n/3 n 4n/3 5n/3
Problem A
dyg 1.305 0.6836 0.4124 0.1786 0.08062 0.02984
ayn 7.171 2.377 1.100 0.3571 0.1392 0.04728
—azp 0.02763 0.1786 0.2062 0.1786 0.1256 0.06586
—ay -1.950 0.3571 0.5498 0.3571 0.1833 0.07207
asg 0.6388 0.2525 0.1031 0 -0.02247 -0.01801
asy 13.68 3.030 0.8246 0 -0.06611 -0.03719
Problem B
-aj 0.4805 0.3265 0.2511 0.1786 0.1445 0.1255
—ag 4972 1.663 0.8213 0.3571 0.2292 0.1774
—ay 0.5209 0.3708 0.2887 0.1786 0.1391 0.1249
- amn 5.360 1.874 0.9328 0.3571 0.2204 0.1765
asp 0.07561 0.1068 0.1354 0.1984 0.04305 0.007350
as, 1.283 0.8428 0.6201 0.3968 0.09312 0.01453
asp 72.52 24.18 1175 4.762 1.054 0.1552
—ayp 0.3848 0.1786 0.04495 -0.1786 0.06166 0.1116
— a4 3.050 0.3571 -0.1833 -0.3571 0.05282 0.1503
—asp 0.9497 0.3532 0.1442 0 —0.01641 -0.006663
- as) 46.66 7.492 1.659 0 ~0.06285 -0.02083
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hd Tn[(x?y)
tll ’ = R E— = l’ 2
(x,y) E(') A n (2.15)

and equating terms of like powers of the parameter A, we obtain a sequence of systems of two integral
equations for the successive determination of the functions t,(x, y). Each system has the form

”T”(X,_Y)Rn] +t2l(x7y)Rn2]dey = F,,[(",Z) (",Z)EQ,-Z (2.]6)
Q

Here,n = 1,2;1=0, 1, ... and F,(r, z) are known polynomials.
The solution of system of equations (2.16) for a fixed value of / is based on the following lemma (see
3], p- 10).

Lemma 2. If the highest degree of the two polynomials Fy(r, z), Fy/(r, z), for a fixed value of /, is equal
to j, then the solution of system (2.16) can be represented in the form

2 b
1n1(r,z)=gl-‘"éer'zzT), L(r,z)=(1—:—2—zz], n=12 (2.17)

where Q,,(r, z) are polynomials of degree j.

Note that F(r, z) = 2n3, Fy(r, z) = 0 and the coefficients of the subsequent polynomials F,(r, z)
(n=1,2;1=1,2,...) for each fixed value of / are integrals which now contain the functions t,,,(r, z)
(n=1,2,m=0,...,I-1), which are defined using Lemma 2 and are calculated using a well-known
formula ([7], p. 45, formula (6)).

In order to determine the unknown coefficients of the polynomials Q,,(r, z) in formula (2.17), it is
necessary to use previous results ([7], p. 44, formula (4) and [3], formula (1.7)). Finally, neglecting terms
of the other of A™, we obtain

) T, Ty + Tiar
1,(r,2)= Tyo+ L+ 1213
1(r2) cL(r,z)[ Y A2
Ta+Tr+Tr’ +T02° 1
414 157" }‘316’ 172 +0(F)] (2.18)

__ 8 [Tz (Bu+Tyrk %L)
t2(”2)‘c1,(r,z)[78+ 2 AR

where
Tio =%:=%§=DLO' D, =Soo—4(;gf)v)v 1 =“%l::
Ty = TD‘—]S = %;)—:l{—cg'(s,o -3¢28,,)- 3[40 - ), - 362, ]}
Ty = %I‘ = MT—O;;C_Z{"CHS"‘ -38,)- G3'[401 - )8y, - 35,, ]} (2.19)

Dy = ke[(5 - 4V)Sy:S10 ~ 3251 + 08 ]

1 clict+ ! c? 2¢%8,, - S
Tia=—| D} - B8 T | 8§+l 720 |
D, 3D, 2 4(1-v)

2 2
c 3$, 3¢S,
-T S — 11 -T A
175 ( o1 4(]—v)) 2 8(I—v)]




626 V. M. Aleksandrov and D. A. Pozharskii

The constants T4, 717 and T, are found from a system of three linear algebraic equations of the form

E,, E; E;f([Te E,
Ey  Ep  Exn|f |Tq||=|E2s
Ey Ey EnfiTh Ey

E, = c2[4(1 —v)(2¢280y = Sy1 ) - 3(4c2S,5 - Sy )]

Eyy = ~4(1-v)(c’Sg - 28, ) +3(3¢7S), - 28y,

E;y =3[-c?(25),+38,,) 428} Eig ==-801-V)C§'/ Dy (2.20)
Ey, = 62[402(8” —381)+ 4(1 = V)28, — Sy )~ 259 +3s30]

Epy = - 4(1=v)(c28), = 2850) - ¢*(28) = 98y ) + 2(28 - 3839

Ey =-3(3c7S,, - 28y ), Eyy =-8(1-V)C§'/ D,

Eyy =c?[-2%(Sp, ~68,2)+ S =385} By =X (Sop - 9812) - 2(S); - 382)

Eyy =3c2[41-)S,, +5,, —4¢’S, + 83} By =-4(1-9G3' /1 Dy

The notation

Smn= 7 .2 m+n+1/2
0 (l—e sin \v)

dy, e*=1-¢* (2.21)

has been introduced in relations (2.18) and (2.19).
The integrals (2.21) can be expressed in terms of the complete elliptic integrals K(e) and E(e)

E(e) - (1 —ez)K(e)

Se =K(e), S =

e2(1 - ez)
-2(1-26%)E(e)+ (2 - 5e” +3¢* JK(e)
Sz = 7l
3e4(1 - e2)
s _K@©-Ee) o _ (2- € )Ece) - 2{1 - € )K(e)
0T e T 3e“(1—e2)
(2.22)
-(8 132+ 3e“)E(e) + (8 —17% + 9e“)K(e)
12 = o 2\2
15e (1—e )
.- 21+ eZ)E(e; j (2 + ez)K(e)
e

_ (8 -3e? -2¢* )E(e) - (8 ~7e’ - e4)K(e)
|5e6(] - e2)

—(8 +7e% + 8e4)E(e) + (8 +3e2 + 4e4)K(e)
15¢°

Sy =
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Table 2
A 4 6 o
c 0.1 0.5 09 0.1 0.5 0.9 0.1 0.5 0.9
Problem A
T/ 495 8.28 10.8 4.83 7.95 10.3 4.61 7.37 9.30
f+/8 2.77 0.915 0.651 2.71 0.888 0.631 2.59 0.829 0.581
f-/d 2.79 0.945 0.693 2.72 0.901 0.649 2.59 0.829 0.581
bl 2.49 1.87 2.00 1.08 0.802 0.853 0 0 0
Problem B
T/8 5.07 8.63 1.4 491 8.17 10.6 4.61 7.37 9.30
f+/6 2.86 0.973 0.714 2.76 0.920 0.664 2.59 0.829 0.581
f-16 2.86 0.976 0.719 2.76 0.921 0.666 2.59 0.829 0.581
f18 1.38 1.10 1.24 0.597 0.469 0.521 0 0 0

The relations between the force 7, applied to the inclusion, and its displacement 8 is found from the
equilibrium condition

(JI T (x,»)dQ,, = (2.23)

N~

which, in the case of solution (2.18), takes the form

T, T, | c? T, 1
T=47t5[7]0 }'J +=5 )»2 +=3 e (7]4+?7]6+—;7‘)+0(F)J (2.24)

The values of the quantities 7, f. = lim(1 = r/c)"*1)(r, 0), 7 — *cF0and f = 10°- lim(1 - 2)"21,(0, 2),
z = 1 -0, relative to J, calculated using formulae (2.18)—(2.24) for 2. = n/2, v = 0.3 and different
values of A and ¢ are given in Table 2

Note that Problem A for a wedge with an apex angle 2n/n (n = 1,2, ...) corresponds to the symmetrical
problem of » identical inclusions in an infinite space; the inclusions are arranged in half-spaces, the
angle between which is 2nt/n. The interaction of four inclusions in a space is investigated for a quarter
space (Table 2, Problem A). The closer these inclusions are to one another (the smaller 1), the greater
the force T required to displace the inclusions by a specified amount 8. In the case of Problem B, the
corresponding value of T is greater than in the case of Problem A. A circular inclusion (¢ — 1) is more
difficult to move than one having a large eccentricity (the value of ¢ is small). The coefficient of the
root singularity of the shear contact stress 1, is somewhat greater on the side of the inclusion which
is closer to the edge of the wedge (f- > f.). The estimate 1y, = O(r,q,/}» ), A = o= holds in the case of
the shear of an inclusion perpendicular to the edge for transverse motion of the shear contact stress
Toz
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